If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+32x+16=0
a = -4; b = 32; c = +16;
Δ = b2-4ac
Δ = 322-4·(-4)·16
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{5}}{2*-4}=\frac{-32-16\sqrt{5}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{5}}{2*-4}=\frac{-32+16\sqrt{5}}{-8} $
| -5x=2x=6 | | 197=197-21t-16t^2 | | -z^2-2z+2=-3z+z^2-7 | | 69+4a=-3a+6 | | x^2(x-1)^2+x(x^2-1)=2(x+1)^2 | | 2y+8=-1 | | 69+4a=3a+6 | | -6(v+4)-2=2v=22 | | 10x+8=6x-28 | | 162x+1=128 | | 8x+23+55=180 | | 6j²-19j+14=0 | | (9x-5)(7x+1)=0 | | 8/6x3/6=x | | x+x(0.1)=11 | | 1/2x+1/3=3 | | -8r=5-7r | | X+x+86=180 | | 42+6w=15+5w | | 3x+8(2x-9)=23 | | 4.9x^2+20x-51=0 | | (5x^2-4x=6)-(2x^2=2x-6) | | x/2+2=17 | | 10n-32=9n | | 3x+7/2=4 | | 2.5m=2m+100 | | -z+2z^2-5=0 | | 4+2m+3=28 | | 3x+6=9x-12, | | 4.9x^2-20x-51=0 | | 6(2c+6)=-48 | | -6b-67=6b+5 |